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Abstract

Pattern recognition in machine learning aims to reduce a large dimen-

sional data set to a lower dimensional manifold contained within it in

order to eliminate redundant information. For example, a photograph

with n2 pixels, corresponding to an n by n image, would have a dimen-

sionality given by Rn2

, however, this is likely higher than the intrinsic

dimensionality of the image, which is dependent on the degrees of free-

dom of the camera. Principle Component Analysis is one of the most

popular methods used to reduce the dimensionality of data sets by pro-

ducing a set of linearly uncorrelated variables in a new coordinate system.

However, PCA does not consider the intrinsic structure of the manifold,

which motivates us to use another method from graph theory that would

take such topology into account.

Graph theory is a feild of mathematics that gained popularity in most

scientific disciplines in the 1990s. In graph theory any abstract object or

collection of objects can be represented by vertices, V = {v1, . . . , vi, . . .},

and the links between them by edges (E). A graph G, also known as a

network, is an ordered pair, G = (V,E) consisting of these vertices and

edges. A graph can be directed or undirected. In a directed graph, the di-

rection of the edges is specified and eij 6= eji. The combinatorial laplacian

is a matrix representation of the graph that preserves local information

and considers the geometry of the manifold contained within it. The first

three eigenfunctions of the combinatorial laplacian for two different data

sets, protein-protein interactions and carcinogenicity of hydrocarbons are

plotted to determine key features. Roughly twenty thousand different

properties of 303 different polyaromatic hydrocarbons are plotted along

with carcinogenicity to determine which features play the biggest roles in

the toxicity of these compounds. The identification of patterns in this

data set through the eigenfunctions of the combinatorial laplacian may
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help determine which features can be used as predictors for polyaromatic

hydrocarbon carcinogenicity.

Mortgages are the largest asset that every bank has. Accurate predic-

tions of mortgage prepayment rates is a critical factor in determining

borrowing rates for banks. Mortgage prepayment rates are dependent on

a variety of different factors, and spectral analysis of these factors may

allow banks to make more accurate predictions. Part of this study aims

to use graph theory to generate a model that allows for more accurate

mortgage prepayment rates.

Protein sequences fold into three dimensional structures as a result of

long range and short range interactions between base pairs. Although for

the most part this structure can be determined by the nuclear magnetic

resonance techniques (NMR) or x−ray crystallography, these are very ex-

pensive and time consuming processes. Thus, there is a significant drive in

computational biology to develop a method that can predict three dimen-

sional structures from a protein sequence. The third part of this thesis

aims to see how graph theory plays a role in protein folding.

1 History of Graph Theory

Network analysis is a research area that dates back to 1736 with Leonhard Eu-

ler’s solution of the Königsberg bridge problem [10, 1]. The city of Könisberg

was built on two islands that were connected by a series of seven bridges . Ac-

cording to legend, countless hours were spent by the people of this city in trying

to determine whether or not there existed a path that would cross each of the

bridges exactly once (a popular brain teaser of the time). Euler was the first
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to prove that such a path could not exist by representing the land masses as

vertices and the bridges connecting them as edges. He said that the bridge

problem could be solved by finding the existence of a ’Eulerian path’ a path

which traverses each edge only once, and showed that no such path existed for

the bridges of K”onisberg (the elementary proof of this can be found in New-

man et al., The Structure and Dynamics of Networks). This proof is

considered by many the first formal theorem in graph theory [10, 1, 5]. Graph

theory gained popularity in the late 1940s, when sociologists and anthropolo-

gists were trying to gain mathematical tools to interpret data from their studies.

In 1929, the author Frigyes Karinthy published a collection of short stories

among which was the story Chains. Although this was not a scientific work, the

book stirred up one of the deepest questions in graph theory: the small world

problem. In this story, he claimed that people become increasingly connected to

each other by each degree of their connections, forming a small world network.

Without any mathematical or scientific rigour, he stated that any two people

globally had five degrees of separation, and that globalization would likely min-

imize this degree of separation significantly [11].

In 1967, Stanley Milgram looked at the popular small world problem, which

allowed people to determine their social connectivity, and helped undercover

the average path length between people in the world [11]. In the 1990s, mathe-

maticians begin to develop tools to analyze large scale networks, expediting the

yuse of graph theory as a practical tool of data analysis in nearly every feild.

It has found applications in biology, the internet, chemistry and physics among

several others.
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2 Graph Theory

In graph theory any abstract object or collection of objects can be represented by

vertices, V = {v1, . . . , vi, . . .}, and the links between them by edges (E) [11].

A graph G, also known as a network, is an ordered pair, G = (V,E) consisting

of these vertices and edges. Each edge can have a corresponding weight w(e),

that describes the strength of this connection. These weights can range from

values of 0 to 1 where a weight of 1 shows the strongest correlation between the

two and that of 0 implies that the two nodes are not connected. However some

types of graphs can have weights that do not lie within this range, and this must

be taken into account in the analysis. The inverse of the weight w(e)−1 can be

thought to represent the distance between the vertices it connects and the sum

of these distances as the path length of the graph.

2.1 Types of Graphs

A graph can be directed or undirected. In a directed graph, the direction of

the edges is specified and eij 6= eji. Directed graphs are common in electrical

circuits where current flows in a specific direction.

In a simple graph, two vertices can only be connected by at most one edge,

and a vertex can not be connected to itself (with what is known as a loop). A

multigraph can have loops or multiple edges connecting vertices.

Moreover, a graph can also be weighted or unweighted. In an unweighted graph,

the edges are given values of either one or zero in the adjacency matrix depend-

ing on if they connect a pair of vertices or not. A graph can be isomorphic

to another graph if the weights of the edges are not the same as long as the

connectivity between the vertices and edges is the identical.
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A bipartite graph is a graph in which the vertices can be divided into two

distinct sets such that every edge in the graph directly connects a vertex from

one set to one from the other. A quasi bipartite graph shows properties of a

bipartite graph and has more use in applications.

A knot in a directed graph such that each vertex in the knot has edges that come

out of it that termintate at other vertices in the knot. Thus, it is impossible

to leave the knot (as in knot theory) while following along the directions of the

edges.

2.2 Graph Properties

A subgraph of a graph is one whose vertices and edges are contained within

the graph. If there is a set of vertices S in a subgraph G(S) such that there

is an edge between any two vertices in G(S), then the S is called a clique. A

maximum clique is a clique which is not a proper subset of another clique.

The distance between two vertices (path length) can be measured in terms

of the number of edges connecting them along with their corresponding weights

(the inverse of these weights). The eccentricity of a vertex v in a graph is the

distance from v to the farthest vertex in G from it. The vertex with the mini-

mum eccentricity is defined in graph theory as the center of the graph. We use

several distance measures in the following applications including mahalanobis

distance and frobenius distance.

A clustering coefficient is a measure of the degree to which nodes in a graph

tend to cluster together.
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Figure 1: Constructing the adjacency matrix from a graph.

2.3 Graph Representation

The adjacency matrix shows how the vertices in a graph are connected. Essen-

tially, the adjacency matrix for a graph G (with n vertices) is a n x n matrix

such that Matrix A = aij

aij =

 1 For an edge from vertex i to vertex j

0 otherwise

A is a symmetric matrix with zeros on the diagonal. The degree of a vertex

describes the number of times an edge terminates at that vertex. The sum of

ith-row of A, denoted by di represents the degree of each vertex and the diagonal

matrix of these degrees (d1, d2 . . . dn), is termed the degree matrix, D.

The edge incidence matrix encapsulates all the information contained in the

adjacency matrix, with an additional factor of direction. An m × n incedence

matrix, B has columns indexed by edges and rows indexed by vertices. By chos-

ing an arbitrary orientation for each edge, and once for each column, we arrive

at the following definition for an incidence matrix B:
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bij =


1 For an edge from vertex i to vertex j

−1 For an edge from vertex j to i

0 otherwise

3 The shape of data

Two postulates that we present are that:

1. Data has a shape

2. This shape is important

A simple crude example of shape is how many pieces the data breaks into and

the statistical version of this is that it breaks into clusters. This is an important

piece of information to have because the clusters often correspond to conceptu-

ally different parts of the phenomenon. Another example is the predator prey

model which obeys a law that ultimately causes it to loop back on itself and

indicates periodic or recurrent behavior.

We immediately create visual representations out of data that we are given. For

example, given the problem of determining the relationship between the heights

and shoe sizes of a group of people, most would show this in the form of a two

dimensional graph with a linear trend. In other words, we would translate the

data into a geometric problem. But what happens if instead of two dimensions

we have data in n dimensions. If we were creatures a higher dimensional space,

we could represent the points in that space to understand more complex trends.

However, as we are confined to three dimensions, we hope that by plotting the

eigenfunctions of the combinatorial laplacian in three dimensions we hope to

analyze the structure of a higher dimensional data set in a lower dimensional

space that still captures and preserves its higher dimensional structure.
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Considering an image with n2 pixels, the dimensionality corresponds to the

number of pixels. However, the intrinsic dimensionality of the image depends

on the degrees of freedom of the camera, and is likely much lower than the

pixel dimension. Pattern recognition in machine learning would argue that

there is a lower dimensional manifold embedded within this higher dimensional

space that contains all the information about the image. Principle component

analysis is one of the most popular methods used to reduce the dimensionality

of the data set by producing a set of linearly uncorrelated variables in a new

coordinate system, however PCA does not consider the intrinsic structure of this

hypothetical manifold. Moreover, when considering the problem of a swiss roll,

in which a 2-dimensional data set is rolled up and embedded in two dimensional

space, PCA miscalculates the distance between two points and can not recover

the two dimensional data set. However we see that our method of plotting the

first three eigenfunctions does recover the 2 dimensional data set.

4 Introduction of Graph Theory for Data Anal-

ysis

The combinatorial laplacian is another matrix representation of the graph that

preserves local information and considers the geometry of the manifold contained

within it. It is easy to prove that it is the discrete version of the continuous

laplacian operator which is defined by the gradient squared and is central to

equations in thermodynamics, quantum mechanics and pure mathematics.

L = ∇2 =
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z
(1)
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Figure 2: The plot on the right shows points on a two dimensional plane rolled
up into a three dimensional space. The plot on the right shows the eigenfunctions
of the laplacian in three dimensions and recovers the structure of the initial data
set.

We develop an understanding of the Laplacian Matrix by the problem of Diffu-

sion. Diffusion is the by which a substance moves from a region of high to low

density. It is driven by the relative pressure of different regions. One can also

consider diffusion pocesses on networks.

We consider the case in which an object (with amount ψi at verstex i) moves

along edges to vertex j at a rate of C(ψi−ψj), where C is known as the diffusion

constant.

The rate at which ψ changes, can be given by:

dψi

dt
= C

∑
j

Aij(ψj − ψi) (2)
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The adjacency matrix (Aij) ensures that the only terms that appear in the sum

are ones that correspond to vertex pairs connected by an edge. Splitting the

terms in the sum we arrive at the following equation:

dψi

dt
= C

∑
j

Aijψj − Cψi
∑

Aij

dψi

dt
= C

∑
j

(Aij − δijDi)ψj

The matrix analogue of this equation is:

dψ

dt
= C(A−D)ψ (3)

where ψ is the vector with components ψi, A is the adjacency matrix, and D

is the degree matrix. The laplacian is defined from this as L = D − A, which

allows for the following:

dψ

dt
+ CLψ = 0 (4)

dψ

dt
+ C∇2ψ = 0 (5)

Note that this is the same equation as the diffusion equation for the continuous

case (equation 6), where the laplacian matrix is analagous to ∇2.
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The normalized Laplacian is defined as:

L̂ = D− 1
2LD− 1

2 (6)

For pattern recognition, we are concerned with the eigenfunctions and eigen-

values of the combinatorial laplacian. We prove the mathematics of Laplacians

using simplicial complexes. In mathematics, a simplicial complex is a topo-

logical space of a certain kind, constructed by ”gluing together” points, line

segments, triangles, and their n-dimensional counterparts; all simplices are ori-

ented (except for vertices). If we let S be any finite simplicial comples, with

simplices. Refer to appendix for proofs.

4.1 Dimensionality Reduction

We explore here the mathematics of dimensionality reduction. We argue, that

the first three eigenfunctions of the combinatorial laplacian contain most of the

information about the data, and hope that plotting them in three dimensions

can reveal information about it as well. The adjacency matrix captures the

entire structure of a network, however, the eigenvectors and eigenfunctions of

the graph laplacian (which is built from the adjacency matrix) allow us to reduce

this information into a lower dimension.

4.1.1 Historical motivation

So as an prototype to this problem, we look at the question, ”can one hear the

shape of a drum?”. This was an article published by the mathematician Mark

Kac in the 1960s.

Formally, the drum can be conceived as an elastic membrane whose bound-

aries are clamped. By using the continuous laplace operator to represent the
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drums surface, Kac was able to deduce the frequencies at which the drumhead

can vibrate. Essentially the allowed frequencies were given by the eigenvalues

of the laplacian in the region. Since the laplacian is entirely dependent on the

shape of this drum we can further say that the geometry is contained within its

eigenfunctions or eigenvalues. In a similar manner, facial recognition algorithms

frequently use the eigenvalues of the laplacian to create a finger print out of the

image. Using the continuous laplacian operator as motivation we can use the

discrete version of the laplace operator to preserve geometric structure within

the eigenvalues or eigenfunctions.

4.1.2 Properties of the Laplacian

The combinatorial laplacian is defined as:

Lij =


deg(vi) if i = j

−1 if i 6= i and vi is adjacent to vj

0 otherwise

The laplacian is related the the notion of smoothness as:

∑
ψ(x)Lψ(x) =

∑
ω(x, y)(ψ(x)− ψ(y))2

= ||∇ψ||

4.1.3 Positive Semi-definite

λ||x||2 = 〈λx, x〉

=
〈
BBTx, x

〉
=
〈
BTx,BT

〉
= ||BTx||2 ≥ 0
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A hermitian matrix is said to be positive semidefinite if:

xTMx ≥ 0 (7)

for all x in cn

For a positive semidefinite matrix, the following statements are all equivalent:

• All eigenvalues of A are nonnegagtive

• All the principal minors of A are nonnegative

• There exists B such that A = BTB

There are instances of positive semidefinite matrices which include symmetric

dyads. For example, if A = uuT for some vector u then:

qA(x) = xTB (8)

4.1.4 Laplacian Eigenfunctions

Mathematically an eigenfunction of an operator is a (non-zero) function that is

returned from The eigenfunctions of the Laplacian can be viewed as an orthonor-

mal basis of global Fourier smooth functions that can be used for approximating

any value function on a graph [3] [2] [4] [17].

These basis functions capture large-scale features of the state space, and are

particularly sensitive to bottlenecks, a phenomenon widely studied in Rieman-

nian geometry and spectral graph theory. A potential drawback of Laplacian

approximation is that it detects only global smoothness, and may poorly ap-

proximate a function which is not globally smooth but only piecewise smooth, or

with different smoothness in different regions. These drawbacks are addressed
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Figure 3: Plotting the first two eigenfunctions for a graph in which each vertex
is only connected to its nearest neighbors and loops around, reproduces a circle.
By inducing further connections, the eigenfunctions reflect this change.

in the context of analysis with diffusion wavelets, and in fact partly motivated

their construction.

4.1.5 Heat Kernel

The Heat Kernel is defined as:

e−tL = Fe−tΛFT (9)

and the zeta function as:

ζ(s) =

N∑
k=2

λ−s
k (10)

5 Applications

5.1 Carcinoginicity of PolyAromatic Hydrocarbons

We are given a data set of 303 polyaromatic hydrocarbons with 20,000 corre-

sponding properties, including their chemical carcinogenicity. Using PCA, we

may be able to reduce the dimensionality of this data set to identify which
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Figure 4: By plotting the first two eigenfunctions of a complete graph, we see
that all the points converge to one point. Removing connections calls out those
points as outliers, showing that the eigenfunctions once again reflect this change
in the intrinsic structure of the data set.

Figure 5: Geometric Regions That are Thought to Contribute to Carcinogenicity.
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properties overlap (by creating orthogonal dimensions). However, this will not

allow us to determine which properties contribute to the chemical carcinogenic-

ity. Statistical analysis can individually determine which properties are most

correlated with the carcinogenicity. However, graph theory allows this problem

to be approached as a whole, and will allow for clusters of properties that con-

tribute to the chemical carcinoginicty.

Several papers have shown that topological regions such as bays, fjords and

harbors which you can see in this figure, have been implicated in the carcino-

genicity of the hydrocarbons, however the evidence is not entirely conclusive.

A number of other properties such as the number of deactivating and acti-

vating regions were also implicated.

This analysis was conducted in a two step method. First the geometric

structures were used to construct a laplacian matrix.

5.2 Geometric Connectivity

Initially the euclidean geometry was used to construct laplacian matrices out

of each of the individual molecules. The hydrogens and carbons were both

included. This created 303 laplacian matrices of different sizes corresponding to

the molecule. Figure 6 shows that the first two eigenfunctions of the laplacian

matrices contain information about the geometric structure, motivating their

use in this application. We can see for example that the molecule napthalene

is very symmetrical in both, anthracene is a mirror image and that 3-methyl

benz[a]anthracene is skewed. A graph similarity measure was then constructed

to determine how similar two molecules were by getting the distances between

their individual laplacian matrices. A minimum connectivity parameter was

set that captured roughly 10 percent of the connections. The graph similarity
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Figure 6: Eigenfucntions of laplacian matrices made from the geometric con-
nectivity of hydrogens and carbons in each of the individual atoms were plotted.
Three are shown here to highlight how geometry is preserved in the eigenfunc-
tions.

measure used was the Frobenius Distance:

FA,B =
√
trace[(A−B)(A−B)T ] (11)

An adjacency matrix was conducted if two matrices corresponding to a molecule’s

geometry were more similar than the minimum parameter. The first three eigen-

functions of this matrix are plotted in three dimensions in Figure 7.

5.3 Connectivity From Properties

The second step was to use the chemical properties to create this matrix and

see if they converge with the geometries, to determine if the geometries reflect

the chemical properties. To analyze the data set, PCA was used to reduce the

dimensions to a smaller number of key uncorrelated properties. However, PCA

showed that the two highest principle axes had an equal contribution from nearly

all 1690 chemical properties. Thus, only 27 properties were considered. The 27
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Figure 7: A plot of the first three eigenfunctions of the combinatorial laplacian
made from the geometric structures of the PAHs.
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Figure 8: A plot of the first three eigenfunctions of the combinatorial laplacian
made up of the chemical properties of the PAHs. This should converge with the
previous graph, but does not appear to here.

properties considered were ones that were implicated in the carcinogenicity of

the molecules.

The distance measure used was based on first determining the normalized vari-

ation from the mean of each of the properties, and then getting a euclidean

distance for each molecule in a 27 dimensional ’chemical property’ space. After
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5.4 Discussion

5.4.1 Carcinogencities

We look into the mahalanobis distance as a euclidean analague for a distance

measure. It is used when, gaussian distributed, correlated variables have differ-

ent scales and gives the relative measure of a points distance from a common

point . The mahalanobis distance Dm between two nodes is defined as:

Dm(x, y) =
√

(Xi − µ)TC−1(Xi − µ) (12)

Each molecule was assigned a carcinogenicity value from 1 to 9. The maha-

lanobis distance between each carcinogenicity value was calculated. The maha-

lanobis distance between each of the carcinogenicities was computed.

5.5 Economic Model of Mortgage

Mortgages are the largest asset that every bank has and most of Canadian banks

have about 150 billion dollars invested in mortgages. A critical input to deter-

mination of price profitability, hedging instruments, hedge policy and funding

policy is prepayment speed of mortgages.

Determination of prepayment speed is critical for measuring optimal funding

strategy and pricing. For example, banks may borrowing at very high interest

rates assuming that very few customers will prepay. However, if the prepayment

speed is higher banks will be stuck with high cost.

An accurate prediction of prepayment rate can save every bank 100s of millions

of dollars. However these prepayment rates depend on a variety of different fac-

tors, including the media, customer age and other demographics such as income
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Figure 9: A plot of first two eigenfunctions of the combinatorial laplacian con-
structed from the similarity of the carcinogenicity groups.
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and financial stability. Each of the factors can be interpreted as another ver-

tex in graph theory, allowing this to become a multidimensional graph-theory

problem. Dimensionality reduction might allow us to visualize trends that are

not otherwise obvious.

5.6 Protein Protein Interactions

Protein-protein interactions can be modelled using graph theory, where each

protein is a vertex and the interactions between them are edges. Bu et al., 2003

tried to uncover topological features of protein protein interactions by isolating

quasi-clique and quasi-bipartite groups. The analysis allowed uncharacterized

proteins to have assigned functions based on the cliques that they fell in. Es-

sentially they were able to use topological structures of the graph to biologically

classify groups of proteins in terms of their possible functions.

In this application this involves a nearest neighbor search, and gives the ra-

tio of existing links between nearest neighbors of a vertex and all possible links

between nearest neighbors. Contact Order on the other hand is the average

sequence distance between residues that form native contacts, over the total

length of the protein. The graph properties that were looked at by

5.7 Protein Folding

From a chemical perspective proteins are linear heteropolymers and can draw

on a combination of 20 different monomers units [13, 8]. However perhaps one

of the most remarkable features of proteins is that despite the large degrees

of freedoms, proteins consistently and quickly fold into their native states [7].

The three dimensional structure is critical in the role that the protein plays
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Figure 10: The first two eigenfunctions of the graph made from protein protein
interactions of carbonic anhydrase four. The left circle shows a cluster of several
proteins that are similar in function. The outlier has identified a protein that is
found in a different part of the body.
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in the body [14, 6]. In their native state protein sequences fold into unique

three dimensional structures as a result of long range and short range interac-

tions between base pairs [16, 4]. Although for the most part this structure can

be determined by the nuclear magnetic resonance techniques (NMR) or x−ray

crystallography, these are very expensive and time consuming processes [9] [15].

Thus, there is a significant drive in computational biology to develop a method

that can predict three dimensional structures from a protein sequence.

The geometry of tertiary folding of proteins has a certain topology that can

be drawn diagrammatically. These diagrams can be two dimensional schematic

representations with symbols for helices and strands. The support for the ki-

Figure 11: This figure shows the possible gibbs free energies across a range of
configurations for a protein ([12]).

netic theory is vast. Looking at figure 2.1(b) we can see that if a protein has

a number of local minimums in the protein folding pathway then the protein

may not be able be stuck in a state that is not the absolute energy minimum

calculated by using the thermodynamic method.
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A protein structure can be visualized as a network of side chain interactions,

with a graph that can be constructing by considering only interacting residues.

The beta carbon atoms of interacting residues may be considered vertices, with

edges dependent on the strength of thir interaction. Interactions between side

chains can be taken into account when considering the graph. The purpose of

using the laplacian matrix in this problem may be three fold. First of all, it

could help detect hydrophobic residues.
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